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Abstract
We propose a Bayesian data synthesis process for synthesizing a person’s income, a sensitive and

confidential variable. We consider four differently-sized synthetic models, found from using best subsets,
and evaluate the respective utility and risk of each. To determine whether sufficient privacy protection
has been achieved, we compare each synthetic model’s utility and risk to that of the confidential model.
We conclude that the 2-variable synthetic model has strong utility and low risk, indicating sufficient data
privacy protection is in place. We present the utility and risk evaluations by synthesizing data from
Glassdoor.
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1 Introduction
There has long been an issue of releasing data which would be interesting and useful to study, but may

harm the individuals whose entries comprise this data. Although deemed a relatively emergent challenge,
the confidentiality issue present with individual-level data (or microdata) has been studied and explored
by numerous statisticians. Little (1993), Rubin (1993), Raghunathan et al. (2003), and Drechsler (2011)
overcame this microdata obstacle by simulating the values of sensitive variables using statistical models and,
rather than releasing the confidential records, releasing the synthetic records. This protected the privacy of
the individuals who may have been harmed with the release of the original dataset while also maintaining the
useful analysis qualities of the original dataset (such as the mean and the relationships between variables).

Among the different types of data which may be sensitive, salary data is one of the most common. A
person’s salary is generally considered private unless that person wishes to share; within a company, salary
data is kept confidential. There may be risk of physical harm if a person is upset at their making less money
than a coworker, for example, and harassment that is salary-related is another possibility.

Throughout this paper, we use a Bayesian synthetic data approach to protect salary information. We
find that our synthetic data has very strong utility and risk improves significantly.

1.1 Data
We found our dataset on Kaggle, a site that boasts free and easy-to-use datasets (Jauhari, 2019). Our

data is titled “Glassdoor- Analyze Gender Pay Gap” and contains the variables JobTitle, Gender, Age,
PerfEval, Education, Dept, Seniority, BasePay, and Bonus. Specific details about all of these variables can be
found in the table below.

We deemed the BasePay variable as the one most sensitive, choosing to synthesize that. BasePay refers
to someone’s base salary (not accounting for, say, their bonus).

The remainder of this paper is organized as follows: In section 2, we go through the methods for our
synthesis of salary data, along with the methods we use for evaluating the utility and risk of our model. In
section 3, we conduct several evaluations of our model’s utility-risk tradeoff and give differential privacy
results. Finally, in section 4, we discuss our model’s functionality bearing all of these results in mind.
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2 Methods
2.1 Synthesis Model & Implementations

The first step in our synthesis process is determining the predictors in our final model. Accordingly, we
begin with graphical exploration of our data. We experiment with scatterplots and box plots attempting to
find potential patterns between our outcome variable, BasePay, and each predictor. Not having tremendous
success, we decide to use best subsets, an automated variable selection algorithm, to choose our predictors in
our final model based on adjusted r-squared. The idea behind best subsets is to fit all 2p, where p = the
number of predictors in the model, possible models and find the best one. We ultimately settle on a model
with two predictors (more detail surrounding this decision can be found in section 4): Age and Seniority.
From here, we begin prepping for the synthesis process by creating a design matrix based on the chosen
model: BasePay ~ Age+ Seniority. We then run the Bayesian multiple linear regression on our selected
predictors using default priors. From here, we save the posterior parameter draws of estimated parameters.
We use these draws to generate synthetic data given the posterior predictive distribution. Next, we check the
trace and autocorrelation diagnostic plots. Traceplots work by plotting the parameter values against each
MCMC iteration number and seeing if the graph instantly dips towards zero. Autoccorelation plots work
by checking to see if the posterior draws are relatively independent from each other. We find encouraging
results from the trace plot—that is, the results are quite random and sporadic. However, the autocorrelation
is not as promising—the plot didn’t fall to zero as quickly as we would like. Thus, we go back and increase
our thinning value in the Bayesian linear regression. With these now satisfying results, we then create our
synthesis function that draws from the posterior parameter draws of the estimated parameters, and then we
perform the synthesis for our dataset by using one set of posterior draws at the index iteration of the MCMC.
We then conduct a Bayesian linear regression utility check by creating a density plot comparing synthetic
and confidential BasePay. Rather than synthesizing just one dataset, we synthesize m = 20 datasets, then
create a density plot displaying the first three synthetic BasePay datasets to check our utility against the
confidential BasePay (Figure 1). Findings from the density plots are discussed in section 3.

2.2 Global Utility
Global utility evaluation is focused on the closeness of the synthetic data with the confidential data.

These evaluations use common statistical tools, such as data modeling, in order to identify the distribution
differences between the two datasets. We use two evaluation methods to measure our global utility: pMSE
and eCDF.

2.2.1 pMSE

Propensity scores are used for measuring the probability that individuals were assigned to a specific
group based on the values of the covariates. Differing probabilities suggest that the individuals in the two
groups vary across these variables. In Woo et al. (2009) and Snoke et al. (2018), propensity score matching is
suggested to see if the confidential and synthetic values differ from one another. Here, the assigned group is
whether the observation appears to be part of the generated synthetic dataset.

To calculate pMSE, we first merge our datasets so that both the synthesized and unsynthesized versions
of BasePay are included in the same dataset. Then we create a new variable, S, setting that equal to 0 if the
observation comes from the confidential data, and 1 if it comes from the synthetic data. Then, using logistic
regression, we fit a model and, for each observation, estimate p̂i—the probability of that observation being in
the synthetic dataset. Finally, we compare the distributions of propensity scores across the confidential and
synthetic datasets with the propensity-score mean-squared error: pMSE. High utility is noted by the model
not being able to distinguish between the confidential and synthetic values, so a lower pMSE value indicates
this high utility.

2.2.2 eCDF

The empirical cumulative distribution function, eCDF, is a discrete function which considers every
observation in the sample to be an outcome of equal likelihood. In the context of synthesized data, a global
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utility measure can be obtained by comparing the eCDFs of the synthetic and the confidential data. Ideally,
they should be similar. Following Woo et al. (2009), for both the synthetic and the confidential datasets, we
estimate the percentile of each record under the empirical cumulative distribution function. Two measures
are calculated: Um, the maximum absolute difference between the confidential and synthetic eCDFs; and Ua,
the average squared differences between the confidential and synthetic eCDFs. As is intuitive, the smaller
these values, the greater the utility of the synthetic dataset.

2.3 Analysis-Specific Utility
Analysis-specific utility focuses on whether similar statistical inferences can be obtained from the synthetic

dataset as from the confidential dataset. These measures are generally dependent on what kind of analysis it
might be expected that a data analyst would want to perform on the synthetic data. For our analysis-specific
utility, we first check the inferences on both datasets for the mean and the regression coefficients. Then we
evaluate the interval overlap using the results of these inferences.

2.3.1 Inference

Say one is interested in inferring a univariate parameter of interest from the synthetic dataset—we used
the population mean. Using the point estimate and the variance estimate, both from the confidential dataset,
one can calculate the point estimate and the variance estimate across m synthetic datasets. One can also
calculate the degrees of freedom in order to compute the confidence interval of this parameter of interest.
Comparisons can then be made between the parameter and confidence intervals of the synthetic and the
confidential datasets. Something very similar can be done with the coefficients of, say, a linear regression.

2.3.2 Interval Overlap

We use definition one of interval overlap, proposed by Dreschler and Reiter (2009). This measure uses
the lower and upper bounds of the confidence intervals for some parameter of interest, making use of the
maximum lower bound across the synthetic and confidential datasets and the minimum upper bound across
the synthetic and confidential datasets in order to give a measure to the overlap between these intervals. This
definition is only measured from zero to one, where one indicates a high overlap and zero indicates that there
is no overlap.

2.4 Risk Models
There are two types of disclosure which may occur with a synthetic dataset: identification disclosure,

which occurs when an intruder identifies records of interest from the synthetic data; and attribute disclosure,
which occurs when an intruder is able to infer the correct confidential value from the synthetic data. We first
focus on identification disclosure risk evaluation, using the expected match risk and the false versus true
match rates, and then the idea of record linkage; then we focus on attribute disclosure risk evaluation, using
a classification-based risk measure.

2.4.1 Expected Match Risk

We use a matching-based approach to calculate both the expected match risk and the true/false match
rate. For each record i, we assume that an intruder knows the true values for some of the covariates. Using
this assumed knowledge, we calculate how many records in the synthetic data match with our record i. Then
we can determine whether the true match is among these records, and how likely it is to find the correct
match for each record. We use Bayesian probabilistic matching, from Reiter and Mitra (2009), though we use
a more basic form.

The expected match risk is a measure of how likely it is to find, across the sample, the correct match
for each record. It is a summation of fractions where the numerator is 1 if the true match is among those
with the highest match probability, and 0 otherwise; and the denominator is the number of records with the
highest match probability. The expected match risk can take a value from zero to n, where the higher the
value in relation to your sample size, the higher the identification disclosure risk for the sample.
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2.4.2 True/False Match Rate

The true match rate measures the size of the percentage of true unique matches. The higher the true
match rate, which can be from zero to one, the higher the identification disclosure risk for the sample.

The false match rate measures the size of the percentage of unique matches which are false. The higher
the false match rate, which can be from zero to one, the lower the identification disclosure risk for the sample.

2.4.3 Record Linkage

Record linkage methods were originally developed as a way to link records from multiple databases, but
William E. Winkler (2004) established a method for applying record linkage to identification disclosure risk
evaluation. These methods attempt to link the synthetic and confidential records, giving us the measures of
true link percentage and false link percentage. The higher the true link percentage, the lower the false link
percentage and the higher the identification disclosure risk, and vice versa.

Again, we make assumptions about which variables the intruder has information on. Using this
information, we can generate pairs between the synthetic and confidential datasets. Then for each pair of
records, we compare the values of the synthesized variables and create similarity scores. Using an expectation-
maximization algorithm as proposed in Winkler (2000), we assign a weight value to each pair, and determine
links. Finally, we link one-to-one the records from the confidential and synthetic datasets, and we can
calculate the true and false link percentages.

2.4.4 Classification-Based Risk

Classification-based risk is an extension of the correct attribution probability (CAP) statistic, a measure
that attempts to predict the value of a particular synthesized variable using some or all of the remaining
variables. However, CAP uses a very simple model to do this, leading Choi et al. (2017) and Kaur et al. (2021),
for example, to suggest the use of a more general classification method to evaluate attribute risk.

We use the synthetic dataset, up to all of the variables excluding the one for which we want to predict a
value, and use a classifier to predict the value for that target variable. Then we do the same on the confidential
dataset. We compare the mean-squared errors of these predictions, as well as calculate the proportion of
observations in which the synthetic data has a less accurate prediction compared to the confidential data.
For better attribute risk disclosure, we wish the mean-squared error of the synthetic data to be higher than
the confidential; and we wish the proportion of observations in which the synthetic data has a less accurate
prediction to be large.

2.4.5 Differential Privacy

Given the confidential nature of our dataset and specifically our outcome variable, protection is required
for the disclose of summary statistics. Following the work from Dwork et al. (2006), differential privacy is a
way to provide privacy protection for summary statistics. More specifically, the idea behind differential privacy
is to add random noise dependent on an analyst’s specified privacy budget to the output of summary statistics
calculated from data. The release of the true value of summary statistics poses a breach of confidentiality,
but by adding random noise, this risk is mitigated. We start by defining several key terms:

1. Database: A database is a confidential dataset.
2. Statistic: A statistic is any numeric attribute pertaining to a dataset that can be represented as a

function, f : N|X| → Rk, that maps databases to k real numbers.
3. Hamming-distance: The Hamming-distance, represented by δ(x, y), is equal to #{i : xi 6= yi} where x

and y are databases in N|X|. In the differential privacy setting, we are considering the scenario where two
databases x and y differ by a singular record (δ(x, y) = 1).

4. l1-sensitivity: The l1-sensitivity is a metric to gauge the “worst case scenario” denoted by ∆f . Further,
the l1-sensitivity is the maximum change in the function f on x and y where x, y ∈ N|X| and δ(x, y) = 1. It
is the case that sensitivity and added noise are positively related.

5. ε-differential privacy: The idea behind ε-differential privacy is to ensure that a mechanism acts similarly
given the presence of noise on similar inputs. This is done by bounding (from above) the ratio of the difference
in outputs from database x and database y of δ(x, y) = 1 after the output has undergone some mechanism.
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6. Privacy budget: The privacy budget is ε that was introduced in the previous definition. ε is specified
by the data analyst and creates an upper bound for the differential privacy ratio. setting the maximum
permissible difference between the log ratio of the probabilities of the outputs. It is the case that added noise
and the privacy budget are negatively related.

With these understandings in place, we now introduce our two summary statistics of interest: mean
BasePay and median BasePay. As mentioned above, we are considering the scenario where two databases
x and y differ by one record (i.e. δ(x, y) = 1). Therefore, x is our confidential Glassdoor sample and y is a
database where one data entry differs from x. To calculate our summary statistics, we first find the mean
and median of the confidential (unsynthesized) version of BasePay. When then specify our values of a, the
lower bound for BasePay, b, the upper bound for BasePay, and n the number of observations in our database.
The specifications of a and b depend on our own intuition. We then calculate the ∆f for mean and median
statistics using the following formulas: b−a

n for mean and b− a for median.
We now take a slight detour to introduce the Laplace distribution. The Laplace distribution follows a

normal distribution with mean 0 and scale ∆f : X ~ Laplace (0, ∆f
ε )). The scale controls the spread, and

thus, the noise; if more noise is needed, the scale is simply increased.
Shifting gears back to our summary statistics, we then specify our privacy budget value: ε = 0.1. Following

the properties of sequential composition, given we calculated two statistics from the same dataset, our privacy
budget needs to be divided by two: εnew = ε

2 = 0.1
2 = 0.05. Using the Laplace distribution, we find the

true BasePay average with added Laplace noise and the true BasePay median with added Laplace noise and
compared those values to the true BasePay average and true BasePay median.

3 Results
Our results for all of our utility and risk evaluations can be found in Table 2. We used several different

combinations of predictors in order to craft our synthetic data, but we focus on reporting the results of
our final model, the one created by the two variables Age and Seniority. Additionally, we assumed several
different combinations of variables that the intruder could know in order to provide an in-depth summary of
the possible results. We focus on reporting the results of two different extremes: one where the intruder only
knows Gender, and one where the intruder knows Gender, Age, and Dept.
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Looking at Figure 1, it’s clear that some synthetic datasets are better fits than others; we largely evaluated
upon the first dataset, excepting those cases in which we evaluated across all 20 that were generated.

3.1 Global Utility
3.1.1 pMSE

Our pMSE measure for the two-variable model is about 0.0138. This calculated propensity score is small
and close to 0, suggesting our model can’t distinguish between the confidential and synthetic datasets. The
low score indicates a high level of utility of our synthetic data.

3.1.2 eCDF

The calculated empirical CDF utility measure of Um is 0.852, which is close to 1. This suggests the
maximum absolute difference between the confidential empirical CDF and the synthetic empirical CDF is
large, which is not an ideal result. However, our Ua is about 0.0339, which is close to 0. This suggests the
average squared differences between the confidential empirical CDF and the synthetic empirical CDF is
small—so though our maximum difference is large, on average, the difference is much smaller. These indicate
relatively high utility for our synthetic data.

3.2 Analysis-Specific Utility
3.2.1 Mean: Inference and Interval Overlap

In the confidential dataset, the mean is given as 94,472.65, with a 95% confidence interval from 92,900.34
to 96,044.96. Meanwhile, in our synthetic dataset, the mean is 94,425.28, with a 95% confidence interval
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Figure 1: Plot of three synthetic BasePays and confidential BasePay

from 92,819.21 to 96,031.35. These results are all very close to one another, marking our interval overlap as
0.9852073. The closeness of this overlap to 1 indicates a high utility for mean inference.

3.2.2 Regression Coefficient: Inference and Interval Overlap

All of the regression coefficient results are very strong, with excellent overlap for the 95% confidence
intervals of these as well. For example, Seniority5—the fifth category of the Seniority variable—has an overlap
of .9812. Age has an overlap of .8982, and Seniority3 has an overlap of .9149.

3.3 Risk Evaluation
3.3.1 Identification Disclosure Risk

3.3.1.1 Expected Match Risk, True/False Match Rate:

Known Variables (Gender): When the known variable is only Gender (chosen because it seems like the
most obvious variable for an intruder to know), the expected match risk on the confidential dataset is 7.800,
compared to the synthetic dataset’s 4.039. With 1,000 observations, there clearly isn’t much risk overall even
with the confidential data, but the synthetic data does reduce that by over three expected matches. Our false
match rate and true match rates are both essentially 0, for both datasets, suggesting that no matches can be
made, period, when Gender is the only known variable.

Known Variables (Gender, Age, Dept): When the known variables increase, our synthetic data’s
improvements compared to the confidential data’s become more clear. We chose Gender again, as it is a
straightforward variable to know; Age, as it is something we think an intruder may be able to find out about
a person; and Dept, as the department categories are general and we think it’s probable that an intruder
would know this.

The expected match risk on the confidential dataset where these three variables are known is 657.6.
This equates to correctly matching almost two-thirds of the data. Meanwhile, our expected match risk of
the synthetic data is only 372.33—a reduction by about 43%, and equating to the correct matches being
only just more than a third of the data. Similarly, while the false match rate of the confidential data is 0,
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the false match rate of the synthetic data rises to 37.22%, a significant improvement. The true match rate
also decreases from the confidential’s 41.1% to the synthetic’s 22.1%, a decrease by nearly half. The unique
matches also fall from 411 to 352.

3.3.1.2 Record Linkage Our record linkage results are also very strong: only a 0.76% true match rate,
equaling a 92.4% false match rate.

3.3.2 Attribute Disclosure Risk

While the MSE of our confidential data is 260,475,523, our synthetic MSE is 437,355,049. This suggests
that the classification prediction of BasePay on our synthetic dataset is much less accurate compared to that
of the confidential dataset, indicating a lower risk for the synthetic versus confidential data.

Furthermore, the mean where the relative error of the confidential data is greater than the relative error
of the synthetic data is only 0.387, also indicating less accuracy—and therefore less risk—of the synthetic
dataset over the confidential dataset.

3.3.3 Differential Privacy

The results from our differential privacy work are illustrated in Table 3. Taking the difference between
our True BasePay mean and the True BasePay mean with Laplace noise, one can observe the true effect of
the noise: 94, 472.65 − 96, 408.60 = −1, 935.95. In a similar vein, taking the difference between our True
BasePay median and the True BasePay median with Laplace noise, one can observe the true effect of the
noise: 93, 327.50−−2, 284, 298 = 2, 377, 625.50. Given the continuous nature of our outcome variable, the
extreme difference in True BasePay median and True BasePay median with Laplace noise is due to the
way in which one calculates the ∆f statistic for median (only b − a without dividing by n). As such, no
substantive conclusions should be made based on the median summary statistic. That said, through the use of
added Laplace noise, we create a protected mean summary statistic that behaves similarly to the confidential
mean summary statistic and eliminates the need and associated risk of releasing the true (confidential) mean
summary statistic to the public.

4 Discussion
As introduced briefly in section 2, we used best subsets to select our predictors for our final model.

Looking at adjusted R-squared and considering the utility-risk tradeoff, we initially selected a model with four
predictors (rather than our final model with two): JobTitle, Age, Education, and Seniority. After significant
analysis, we found that our utility was incredibly strong yet our risk was quite poor.

Synthetic data with high utility and poor risk is very problematic when working with confidential data.
Figure 2 compares the density plots of three synthetic BasePays and confidential BasePay for the two, three,
four, and five predictor models. As one might assume (and can also see), plots of the synthetic BasePays
and confidential BasePays are more aligned (i.e. the synthetic BasePays follow the shape and trend of the
confidential BasePay better) in the models with more predictors compared to the models with less predictors.
That said, even the worst-performing density plot (the two-predictor model) performs quite well.

Table 2 displays our risk measures by model size. One may notice that as the model size decreases (goes
from five predictors down to two predictors), the risk improves greatly. That is, the expected match risk
decreases, the true match rate decreases, the false match rate increases, and the number of unique matches
decreases.

Given privacy and the protection of our confidential data is of the utmost priority, we ultimately decided
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that sacrificing some utility for significantly improved risk and greater protection of the confidential data was
worthwhile.

Based on our risk results given in section 3, we can say that our synthetic data provides sufficient privacy
protection. Risk is significantly better in the synthetic data versus the confidential data under every measure:
the expected matches decrease by over 40%, the true match rate decreases and the false match rate increases,
the percentage of true linkages decreases and the percent of false linkages increases, the MSE of the synthetic
BasePay is larger than the MSE of the confidential BasePay, and the synthetic data has a greater error than
the confidential data over 60% of the time. While these risk results could be improved, it would definitely
come at the expense of significant utility.

4.1 Further Research
Furthering the results shown here, the next step could be additionally synthesizing the demographic

variables such as Age, Gender, and Education. This would further decrease the risk of both identification
and attribute disclosure; however, it would likely also decrease the utility of the synthetic data. If this step is
taken, perhaps a better model for BasePay might be used. Additionally, the order in which the variables
should be synthesized would have to be decided, if a sequential synthesis were to be chosen.
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